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A number of schemes which use partitioned forms of the matrices of the finite-element method are proposed for dynamic 
problems of acoustoelectric elasticity. The features of the solution, specific for electroelasticity, of generalized eigenvalue 
problems for large sparse matrices, and also of the realization of the method of expansion in eigenforms in harmonic non- 
stationary problems are pointed out. An explicit-implicit scheme for the integration with respect to time of the equations 
of the finite-element method of non-stationary acoustoelectroelasticity is proposed and discussed. Approaches to analysing 
pyroelectric devices at low modulation frequencies are indicated. The ARPACK software packages for solving eigenvalue 
problems are integrate’d into the ACELAN specialized finite-element system, for which corresponding partitioned 
algorithms are realized. Numerical experiments are presented on determining the first eigenfrequencies and forms of the 
oscillations of an axisytnmetric composite piezoelectric radiator in ACELAN and in the well-known ANSYS finite-element software 
package. The method of expansion in eigenforms in illustrated by the analysis of a longitudinal-longitudinal piezoelectric 
transformer. Q 2000 Elsevier Science Ltd. All rights reserved. 

A characteristic feature of dynamic problems of acoustoelectroelasticity is the connectedness of the different kinds 
of physical-mechanical fields. When designing piezoelectric devices, because of the presence of a piezoelectric effect, 
it is necessary to take the connectedness of the mechanical and electric fields into account. When piezoelectric 
materials interact with an acoustic medium, or there are considerable changes in temperature, it is also necessary 
to take into account the acoustic or temperature fields. In general, in the case of a partial finite-element 
approximation of linear problems of acoustothermoelectroelasticity (with respect to the space coordinates), by 
cbmbining known res&[l,2] one can obtain vector equations of ihe form 

M.;r+C.g+K.a=E ** . 1 (0.1) 

where 

M= 

and for non-stationary problems one must add the initial conditions to (0.1). 

(0.2) 

(0.3) 

Here the unknown vector of the nodal degrees of freedom a = a(t) may contain nodal mechanical displacements 
U, electric potentials Q1,, the velocity potentials of the acoustic medium W and the increments of the temperatures 
T. Blocks of matrices &I, C and K and of the vector F are formed due to interaction of the fields, which will be 
indicated by subscripts. The notation in the subscripts corresponds to the following field functions: u is the field 
of mechanical displacements, cp is the electric potential field, IJJ is the velocity field potential of the acoustic medium 
and 0 is the temperature increment or simply the temperature. 
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For problems of harmonic oscillations with a frequency f 

a = ~(x)cxp(./0)/). F = F'(x)cxp(jtot), (o = 2rtf (0.4) 

from (0.1), omitting the factor exp(jtot) and the tilde for the amplitude values of g and F, we have 

-(,)~M • a +jo)C • a + K -a = F (0.5) 

In (0.1)-(0.5) the structure of the equations of the finite-element method of problems of acoustothermo- 
electroelasticity, is represented in general form. In practice the storage formats of the matrices and the vectors of 
the finite-element method depend on the algorithms for solving problems (0.1) or (0.5) and the strategy for forming 
the finite-element objects and the operations carried out on them. 

Note also the following facts: 
1. there is a considerable number of zero blocks in the matrices from (0.2) and (0.3); 
2. the degrees of freedom of the electric potential @ are mass-free; 
3. the matrices Ru, and Ru, from (0.2) are extremely sparse, and they describe the interaction of the solid-state 

structure and the acoustic medium only at their common boundary; 
4. the connectedness of the temperature field is such that, in the majority of problems requiring the temperature 

to be taken into account, we can neglect the blocks Kr0 and Kr0 in matrix C from (0.2). 
As a result, for different problems, different forms of representation of the finite-element objects in (0.1)-(0.5) 

turn out to be convenient: 
1. a completely "mixed" form, when components of different degrees of freedom are written in succession for 

each node in the vector a; 
2. a partitioned form, when U, @, ~ ,  T and the corresponding blocks of the matrices from (0.2) and (0.3) are 

formed separately; 
3. a partially "mixed" form, when subvectors are distinguished individually in the vector a only for certain types 

of fields. 
Below we will analyse the last two cases, in which it is convenient to work with partitioned matrices or when 

individual blocks are separated. 

1. D E T E R M I N A T I O N  O F  T H E  E I G E N F R E Q U E N C I E S  O F  
P I E Z O E L E C T R I C  D E V I C E S  

The  most  important  characteristics of  piezoelectric devices are their electric resonance frequencies 
f~. = to,//(2~r) and ant i resonance frequencies f a i  = t%i/(2"tr). The  electric resonance and ant iresonance 
frequencies are the eigenfrequencies of  the piezoelectric devices and are calculated ignoring the effect 
o f  damping, tempera ture  factors and interactions with acoustic media.  Hence,  these frequencies can 
be f o u n d  using the finite-element me thod  f rom the solution of  the general ized problem obtained f rom 
(0.5) using eigenvalues of  the form 

K . a = o)2M • a (1.1) 

where 

M .... K = r , a = (1.2) 
M = 0 ' K,,e -K~0t0 

Here,  the matrices Ku~ and K~, in (1.2) differ for electric resonances  and antiresonances.  Mathe-  
matically this difference consists of  the following. If  the matrix K and the vector  • for the electric 
resonance frequencies are represented in the part i t ioned form 

II K,,,, K;,p K;;~ 
K--IIK:;r; -•;; -K;; 

-Kqptp -K~ptp 

,,.} (1.3) ( I ' =  (i, 

the matrix K and the vector (I) for  the electric ant i resonance frequencies will have the form 

-Kqxp 
(1.4) 
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Here, in the vector • in (1.3) we distinguish the degrees of freedom ~ individually for which, 
when finding the electric antiresonance frequencies, we assume that the electric charges at the 
corresponding nodes are equal to zero, and when finding the electric resonance frequencies 
~I,~ = 0.  

Hence, to determine the electric resonance and antiresonance frequencies we need to solve problems 
(1.1), (1.2) twice wiith matrices K in the forms (1.3) and (1.4). 

A mathematical investigation of the continual forms of eigenvalue problems (1.1)-(1.3) and (1.1), 
(1.2), (1.4) was carried out previously in [3]. The results obtained transfer naturally to problems 
discretized using the finite-element method. Thus, we have the following properties. 

CC SS The matrices M and K are symmetrical; Muu > 0; K I> 0; Kuu I> 0; I ~ ,  > 0; K~,> 0; K** > 0, where 
here and below the; inequalities A > B and A i> B for the matrices denote that the matrix (A-B) is 
positive definite or semi-definite respectively. In this case we assume that at least one constraint is 
imposed on the electric-potential field ~o which eliminates its indefiniteness apart from an arbitrary 
constant. 

Problems (1.1)-(1.3) or (1.1), (1.2), (1.4) can be represented in the form 

K,,, ,  • U = ~.M,,, ,  • U ,  ~. = to 2 (1.5) 

where 

- -  - I  T - I  T 
K , , ,  = K,, , ,  + K , , ~ .  K ~  • K , , ~ ,  • = K W • K u ¢  - U (1.6) 

The following inequalities are satisfied for the matrices g,  uu of the problems of finding_the electric 
a Kuu Kuu >I O, Kuu where Kuu and Kuu antiresonance frequencies Kuu and the resonance frequencies --a --r --r a Wr 

are obtained from (1.6), (1.3) and (1.6), .(1.4), respectively. 
tork and hak -- toa~ (k  - 1, 2 . . . . .  n ,  n is the order of the matrices Muu and Kuu ) The eigenvalues hrk = 2 _ 2 _ . 

are real and non-negative. The eigenvectors corresponding to them, which we will denote by Wrk and 
Wak, form bases in R n, where these vectors can be chosen to be orthonormalized with respect to the 
matrices of mass M.~u 

(W~,k, W.y,,) = W ~  " M, , ,  " W.~,, = 5,,,, (1.7) 

T . ~ y  W ~  m 2 W~. K,,  • = to~,,,Sk, , ,  y = r .a  (1.8) 

If the electric resonance frequencies COrk and antiresonance frequencies toak are numbered in increasing 
order, we have the inequalities 

to;. k ~< ¢0~; k = 1,2 ..... n 

Thus, the coupled! eigenvalue problems (1.1), (1.2) with respect to the triple of unknowns {to, U, ~} 
are in fact the generalized eigenvalue problems (1.5), (1.6) with respect to the pairs {to, U}. Changing 
from (1.1), (1.2) to problem (1.5), (1.6) we can discuss the procedure of static condensation by eliminating 
the degrees of freedom of ~ .  If, when realizing this procedure in practice, we form the matrix Kuu 
explicitly, the properties of the sparseness of the matrices of the finite-element method will be lost. 
With such a strategy for solving generalized eigenvalue problems we can use methods which transform 
the matrix K,u • It is this approach for determining the natural frequencies of piezoelectric devices that 
is assumed in the well-known ANSYS finite-element software package [4], where the Hauseholder- 
Bisection-Inverse iteration (HBI) method is used. 

The change from sparse matrices to filled matrices can hardly be regarded as a successful solution. 
Algorithms which use partitioned forms of the matrices and which preserve the sparseness structure 
are more attractive. 

We will show tha~I, to solve eigenvalue problems (1.5), (1.6), one can effectively employ modern 
methods of solving generalized eigenvalue problems for large sparse matrices. For specific problems 
these methods require the user to employ procedures of multiplying a matrix by a vector, the addition 
of matrices and the solution of a system of linear algebraic equations. 

Depending on the method employed, and also on the problems of searching for groups of eigenvalues 
with some extremality properties, eigenvalue problem (1.5) can be modified to one of the following 
fundamental forms 
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A) AM.U=IaU, AM =M~,,I,'A~ (1.9) 

A~). A.,' y = lay, A~ : L-~ "Ao ' L~/r (1.1o) 

B) A~J. U = vU, A~ = A~'. M .... (1.11) 

B,) A~ -t . y = v y ,  A~. I =L ' r , .A~I .LM (1.12) 

where 

y : L ~ 4 . U ,  M , , , : L M . L  ~ ,  A ( ~ : g , , , - o M , ,  (1.13) 

LM is the Cholesky factor of the matrix M,~, (r is the value of the shear and Ix = h - (r, 
v = ( X  - 

The matrices As and A~ 1 of problemsAs and Bs are symmetrical, while the methods of solving these 
problems maintain the usual orthogonality of the calculated eigenvectors y. The eigenvectors 
U = W++ obtained from (1.13) then turn out to be orthogonal in the sense of the scalar product from 
(1.7), i.e. orthogonal with respect to the matrix of masses. 

1 The matrices AM and A ~  of problemsA and B can be regarded as symmetrical operators in R ~ space 
with a scalar product from (1.7) 

A(-I) . a , b ) =  (a,A~~ I) .b). Va, b ~  R" t ~  M 

Hence, for problems A and B the orthogonality of the vectors U is usually maintained in the sense 
of the scalar product from (1.7). 

Hence, problemsA andAs orB and Bs and methods for solving them in fact differ solely by the scalar 
product employed. Hence, we will only consider problems A and B below. 

To solve problemA by iterational methods for large sparse matrices we need to carry out the procedure 
of multiplying matrix AM by the iterated vector U and multiplying the matrix M,u by a vector to calculate 
the scalar product from (1.7). 

To do this at the preparatory stage we must form the matrix 

Am,,, = K,,,,- cM .... (1.14) 

and obtain Cholesky factors Muu and Kgogo(K~ = L** "L~)7" 

M,,,, ~ LM. K ~  ---) L ~  (1.15) 

Further, the algorithm for calculating z = AM" U for partitioned matrices, as follows from (1.9), (1.6), 
(1.14) and (1.15), can be realized as follows: 

• 7" .= K,,~ - U X I 

Solve L~,~.x 2 = x  I f o r  x 2 

T Solve L ~ . x  I = x  2 f o r  x I 

v] := K , ,  • x I 

v~ := A,,,, .  U (1.16) 

V I : =  V I + V 2 

Solve L M.v 2 = v  I f o r  v 2 

Solve L'JM'Z=V 2 f o r  z 

To solve problem B we need a procedure for calculating the vector z = AM 1 • U or z = A~r 1 " v; 
v = Muu " U for the iterated vectors U. Hence, here, to determine the vector z, we require to solve the 
system of linear algebraic equations 
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II II {:} {;} G o = K - aM = 7 , Ga '  = (1.17) 
K , , ,  -K~o  ~ 

for the vector L.z, x] T, or the system of linear algebraic equations 

Ao. z = v (1.18) 

for the vector z. 
System of linear algebraic equations (1.17) can be solved using LDLT-factorization of the matrix G, 

and subsequent separation of the vector z from the vector of the solutions. This method does not require 
the formation of b]Locks of the matrix K. An alternative approach is to use iteration methods to solve 
system of linear algebraic equations (1.17) or (1.18), for which multiplications of G, or A~ by vectors 
are required. This operation, in the block approach for system of linear algebraic equations (1.18), is 
carried out by the first six steps of algorithm (1.16). 

2. MODE EXPANSION METHODS FOR A DYNAMIC ANALYSIS OF 
P I E Z O E L E C T R I C  DEVICES 

The classical method of expansion in eigenforms or modes for solving linear problems of steady 
oscillations and non-stationary problems, as they apply to the analysis of piezoelectric devices, has a 
singularity, due to the presence of an uncoupled component of the electric potential ~o [5]. 

As in Section 1, we will investigate piezoelectric devices ignoring temperature factors and acoustic 
media, but we will now include the damping properties in the consideration. Like the approximate 
method of describing the Rayleigh damping mechanism, used in structural analysis, for piezoelectrics 
we will assume 

C,,,, = otaM,, + ~aK,,, (2.1) 

where CXd, ~d are damping factors. Note that since the matrix Kuu rather than I~,  occurs in C~, formula 
(2.1) takes into account the totality of mechanical, piezoelectric and dielectric losses. 

We will first consider the problem of the steady oscillations of piezoelectric devices. In the finite- 
element equation (0.5), the matrices M and K and the vector a have the form (1.2), while 

C= 0 ' F={F~+Kq,~ 'V~ (2.2) 

where the vector V takes into account in F the non-uniform principal electric boundary conditions, while 
the principal mechanical boundary conditions are assumed to be zero. 

Solving Eq. (0.5) for ~,  taking (1.2) and (2.2) into account, we obtain 

9 
( -m'M,,  + j00C~,, + K,,,, ). U = F, (2.3) 

- I  T 
= K W - K , ~  0 • U + Of ,  (2.4) 

- -  -0 . ( F ,  + K¢ , ,  • V )  ( 2 . 5 )  F, ,=F, , -K , ,~-V-K,¢ .O, . , ,  ~.~, =-K~0 

The vector 4~st from (2.5) is also an uncoupled component of the electric potential, determined, in fact, 
from the separate problem of quasi-electrostatics 

K~p. O~t = -F~o - K~,, • V (2.6) 

We will find the solution of problem (2.3) in the form of an expansion in eigenvectors (modes) W~tm of 
problem (1.5), (1.6) and the same homogeneous principal boundary conditions 

U= ~ Z,,,Wv, . (2.7) 
m = l  
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Here ~/ = r or ~ = a depending on the correspondence of the homogeneous principal boundary 
conditions of problem (2.3)-(2.5) and (1.5), (1.6), where usually ~/= r. 

Substituting (2.7) into (2.3) and multiplying the equation obtained scalarly by W~, and taking into 
account the orthogonality relations (1.7) and (1.8) and representation (2.1) we obtain 

I 
Z~. co~. - o12 + 2j{ktoo) k P~ (2.8) 

where 

I - -  (.O k 
P~ = w~r' F,,, g, = oc,, 2--~-k + 13,~ --~-- (2.9) 

The solutions of the problems of the steady oscillations of piezoelectric devices by the method of 
expansion in oscillation modes are also determined by formulae (2.7)-(2.9) and (2.4). 

The solutions of non-stationary problems (0.1), (1.2), (2.2), (2.1) by the mode-expansion method were 
found in a similar way, only now the coefficients Z m  in (2.7) are functions of time, like the components 
of the vector F of the right-hand sides. The final expressions for the coefficients Z k  have the same form 
as in the structural analysis [6]. 

The advantages and disadvantages of the mode-expansion method are well known from experience 
in solving problems of structural analysis. Thus, an important advantage of the method is the possibility 
of the direct determination of the damping factors ~ k  of the individual modes, without taking the 
formulae from (2.9) into account. These factors can be specified from the experimentally measured 
values of the mechanical Q-factor Q~ of the modes with number k: ~k = 1/ (2Qk) .  

The presence of the uncoupled potential q~,t and the matrices K,~, in (2.4) and (2.5) makes it necessary 
to use partitioned forms of the matrix K even if, when finding the eigenvalues and the modes, this 
approach has also not been used. Note that by specifying the vectors of the external actions Fu, F~ and 
V in advance and permitting only a proportional change in them later, one can calculate the quantities 
P k  in (2.9) at the stage of solving the eigenvalue problem. 

3. E X P L I C I T - I M P L I C I T  SCHEMES FOR I N T E G R A T I N G  THE 
EQUATIONS OF A C O U S T O E L E C T R O E L A S T I C I T Y  WITH R E S P E C T  TO 

TIME FOR UNSTEADY PROCESSES 

We will consider non-stationary problems of acousto electroelasticity without temperature effects. 
As in Section 2, expressing the electric potential q~ in terms of U, we can convert system (0.1)-(0.3) 
without temperature fields T and the dissipative properties of the acoustic medium (Ru, = 0[2]) to 
the form 

M - k i + C . f i + K . a  = F  (3.1) 

- I  7" _ - I  • = Ktm .K,,to-U +~,. ,, ~,., - - K ~  .(F,p + K~p o -V) (3.2) 

where 

I1: ''''° II .... " 11 II IJ M =  M ~  ' C=  _RT~ ' C w  , K =  0 K w (3.3) 

a=Lu..J (3.4) 

and, in system (3.1), (3.2), one can also take into account the non-uniform principal mechanical boundary 
conditions. 

To integrate problem (3.1)-(3.4) with respect to time it is convenient to use the family of Wilson and 
Newmark schemes, presented in unified form [7]. A special case of the schemes from [7] is the usual 
method of central differences, which will also be considered further. 

In the time net t i = "r i (i = O, 1, 2 . . . .  ; T = At  is the time step) we will approximate the derivatives 
with respect to time by the central differences 
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I I 
/i i =--w-(ai+!x_ - 2 a i  + a i _ l )  , lii  =-~-(ai+! -ai_t)  (3.5) 

where a i = a(ti). 
Substituting (3.5) into (3.1) and (3.2), specified for the instant of time ti, we obtain a step scheme of 

the form. 

/ C  (3.6) M "/1 .ai+ I =Feff(F,,i,Vi.f~i,ai,ai_l), M eg/. = ~ M +  
2t 

F':t;' = F/+ (-~-2 M - K) • ai - (-~-~-2 M - ~-~ C)- a~_, (3.7) 

After determining ai+ 1 = LUi+I, lIfi+lA T from (3.6), (3.7) and (3.4) from the quantities Fui , Vi, dJ)i, ai, 
ai-1 to change to the next time layer one needs to determine ~i+1 from (3.2), i.e. solve the system of 
linear algebraic equations 

K w "  ~ i+1  = K .  r "  Ui+~ - F~o,i+l - K o v  ' V,'+l (3.8) 

Hence, even if it is possible to diagonalize the matrix M eft and the scheme in step (3.6) becomes explicit, 
at the stage of finding qbi+ 1 it is necessary to solve system of linear algebraic equations (3.8). Scheme 
(3.6)-(3.8) is similar to that described earlier [8] and, for the reasons mentioned, was called an explicit- 
implicit integration scheme. Naturally, scheme (3.6)-(3.8) is conditionally stable, like the usual method 
of central differences. 

We will discuss separately the problems related to finding the reciprocal matrix (Meff) -1. From (3.6) 
and (3.3) we have 

_R,7,. ¢ 2 n w  + C ~  
"C 

(3.9) 

Here Muu and M** are the matrices of the "masses" of the solid-state structure and the acoustic medium 
respectively, C** is a matrix obtained as a result of finite-element approximation of the impedance 
conditions on the specified outer boundaries of the acoustic medium and Ru, is the coupling matrix of 
the solid-state structure and the acoustic medium along their outer boundary Fhws [2], where it is 
convenient to relate the normal components of the displacements of the solid-state structure on Fhws 
at common nodes to the velocity potentials of the acoustic medium. If we assume that the damping 
matrix Cuu is proportional to the matrix of the masses M,,u (Muu = adCuu), all the element matrices of 
the blocks of the matrices from (3.9) can be calculated as integrals solely of the products of form 
functions. At the same time, the element matrices of the blocks of matrix K are calculated as integrals 
of products of the derivatives of form functions. Consequently, standard approaches, similar to methods 
of diag0nalizing a mass matrix in structural analysis can be applied to the element matrices of the blocks 
from (3.9). 

We will calculate, the element matrices for the blocks of matrices (3.9) by the method of nodal 
integration [9]. The, n, the matrices Mu~, Cu~, M,¢ and C+, become diagonal. In the element matrices 
R,,, with the appre.priate numbering of the degrees of freedom, the non-zero elements will be found 
only on the second principal diagonal, op..posite the usual matrix diagonal. Finally, after renumbering 
the degrees of freedom, the matrix M e~7 can be represented in the following partitioned-diagonal 
form 

Ii oM 0 I M':/~ ~ M ii O = 0 B M 

where O M is the diagonal submatrix assembled from the contributions of the degrees of freedom, which 
do not interact with the boundary Fhw s and B m is a partitioned-diagonal submatrix, each block of which 
with numberj  corresponds to the interaction of the solid-state structure and the acoustic medium at 
one node on Fhw s and is represented by the 2 × 2 matrix 
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biJt hi/2 

bS_ 

where the component b[l is the contribution of the matrix Muu, b~2 is the contribution of the matrix 
M**, and b~2 is the contribution of the matrix R, , .  

The reciprocal of the matrix M~ffis easily calculated in explicit form 

BMi = i J  (big)2 l i½ bi j, 0 BTd bl I b22 

Hence, stages (3.6) and (3.7) of the step scheme can be represented in the explicit form 

(3.10) 

where the matrices M d and C d are diagonalized to the partitioned form in the same way as the matrix 
M}e. 

Note that in the block diagonalization of the matrices Meg, M and C one can also use the method 
of separating the "principal diagonal" [10], assuming that the second principal diagonal can be separated 
for Ru,. 

As a result, we have an explicit-implicit integration scheme (3.10), (3.8) using the method of central 
differences, for which procedures of multiplying a matrix by a vector and solving system of linear algebraic 
equations (3.8) are required. 

4. P Y R O E L E C T R I C  D E V I C E S  AT LOW M O D U L A T I O N  F R E Q U E N C I E S  
OF T H E  T E M P E R A T U R E  F I E L D S  

It was pointed out in [11] that the operation of puroelectric pickups at low modulation frequencies of 
the temperature fields can be modelled following from (0.1)-(0.3) by a system of finite-element methods 
(the effect of the acoustic medium in this case is ignored) 

C 0 0 . T + K 0 0 - T =  F 0 (4.1) 

K,,, - U + K,,~ - •  = F,, + K,0.  T (4.2) 

T K,,, • U - Kq~ - • = F, -Ktp 0 • T (4.3) 

Problem (4.1)-(4.3) turns out to be connected with respect to the temperature fields and the 
displacements-electric potentials only via the vectors on the right-hand sides. Here it is convenient to 
form individual blocks Coo, K00, Ku0 and I~0. System (4.1)-(4.3) can be solved by standard methods, 
both for problems of harmonic modes and for non-stationary problems. 

5. N U M E R I C A L  E X P E R I M E N T S  

When solving the generalized eigenvalue problem (1.5) from Section 1 the ARPACK software package [12], which 
uses Arnoldi's method, was employed. We chose the ARPACK program for the eigenvalue problem in the form 
(1.9). All the procedures for introducing the parameters of the initial problem, forming the finite-element model 
and outputting the results, were carried out using the ACELAN finite-element program [13]. The ACELAN software 
package was specially supplemented with programs which carry out the steps of algorithm (1.14)-(1.16) with 
partitioned matrices, which were stored in a sparse row format. The code which generated the ARPACK package 
was included in the library of the ACELAN subroutines. 

As an example, we will consider a composite piezoelectric radiator of acoustic waves of axisymmetrical form, a 
meridian section of which is shown in Fig. 1 in a cylindrical system of coordinates Orz. Mechanical oscillations in 
the device are generated by a piezoelectric element of radius rl and thickness h6, made of TsTBS-3 thickness- 
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polarized piezoelectric ceramics (shown by the vertical hatching in Fig. 1). The end surfaces of the piezoelectric 
element  z = H 1 = h] + . . . +  h 5 and z = H 2 = h I + . . . +  h 6 are coated with continuous circular electrodes of the 
same radius r 5. The piezoelectric element is rigidly clamped to a hollow steel cylinder with an upper cap (represented 
by the left-leaning hatching) which in turn is rigidly clamped to a hollow cylinder of aluminium, the bottom end 
of which has a circular opening (represented by the right-leaning hatching). To increase the compliance for flexural 
oscillations, the steel part of the device has a r e ce s s  h 4 thick with a dimension 8 = r4 - 1"2. 

The geometrical dimensions shown in Fig. 1 are as follows: rl = 21 mm, rE = 4 mm, r 3 = 19 mm, 
r4 = 20 mm, r5 = 16 ram, hi = hE = 5.5 mm, h 3 = 3.5 mm, h4 = 2 mm, h5 = 3.5 mm a n d h  6 = 1.2 mm. The material 
constants of the TsTBS-3 piezoelectric ceramics were taken from [14], the steel has a density Psi = 7.86 × 103 kg/m3, 

, 11 2 Young s modulus Est := 2 × 10 N/m and Poisson s ratio Vst = 0.29, while the aluminium has the following constants: 
Pat = 2.7 × 10 3 k g / m  3, Eat = 7.1 × 101° N/m 2 and vat = 0.33. 

For this device it is required to determine the first frequencies of flexural oscillationsfr(j), excited by the potential 
difference 

tp I~=H, -¢P Iz=n_, = Vexp(j2nfr()) t) 

between the electrodes of the piezoelectric element. To do this we constructed finite-element models and we solved 
eigenvalue problems (1.1)-(1.3) to determine the electric resonance frequencies frk and (1.1), (1.2) and (1.4) for 
the electric antiresonance frequencies faro. These two problems, with homogeneous natural mechanical boundary 
conditions, differ solely in the electrical boundary conditions; for frk we use ~o -- 0 when z = H1 and z = H2, while 
fOrfam 

0 for z=H~ i 
• Dzrdr=O for z=H,  

q0= const.exp(j2n.p) for z=H 2' o 

where D is the electric induction vector. By comparing the natural frequencies f~  and faro obtained we find the 
actual working frequencies of electrical resonances fr(j) andfa(j), which are close to one another,  but nevertheless 
differ considerably. The numbering (j) of these frequencies, generally speaking, is not the same as the numberings 
k and m. 

The numerical results obtained in ACELAN using axisymmetrical quadratic triangular finite elements with six 
nodes, were compared with similar results obtained in ANSYS, where, for axisymmetrical problems of piezoelectric 
analysis, only four-angle finite elements with four nodes are possible. Below we present values of the natural 
frequencies of a piezoelectric radiator (in RHz), calculated ACELAN with ND = 239 and (in parentheses) by 
ANSYS with ND = 253, where ND is the number  of nodes in the finite-element models 

l )  I = 0 .  I ! x I 0 - 3 ( 0 ) ,  

.I)-2 = [4.55 (14.d4), 

J;.3 = 22.11(22.01), 

Jal = 0"43Xl0-3 (0), 

./~,2 = 14.94(14.85), 

J;,3 = 22.31 (22.20). 
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As can be seen, there is quite good agreement between the results obtained using ACELAN and ANSYS. 
The working frequencies of a piezoelectric radiator are the electrical resonance frequencies f,0) = f,2 or 

f~(2) = fr3, for which the corresponding electrical antiresonance frequencies are f~(1) = f ,2 or f,(2) = f~3. At these 
frequencies flexural oscillations of the piezoelectric radiator occur. As a result of calculations we obtained that 
the mode of oscillation at a frequency frO) contains pronounced antiphase motions of the lower and upper ends 
of the piezoelectric radiator, while the mode of oscillation at a frequencyfr(2), on the other hand, contains in-phase 
motions. Note that the forms of the modes in calculations using ACELAN and ANSYS hardly differ from one 
another (Interesting practical applications of these results and the optimization of the dimensions of the piezoelectric 
radiator are outside the scope of this paper.) 

In other test calculations in a modal analysis of electroelasticity problems we also obtained good agreement 
between the ACELAN and ANSYS results. 

We would expect the mode-expansion method from Section 2 to be effective for analysing devices operating at 
pronounced resonance frequencies. For example, consider a longitudinaMongitudinal piezoelectric transformer 
[15], shown in Fig. 2. The sections of the transformer consist of TsTBS-3 piezoelectric ceramics [14] and have the 
following parameters l~ = 12 = 0.05 m, a = 0.02 m and b = 0.005 m. (The directions of polarization of the 
piezoelectric ceramics in the exciter and generator sections are shown by the bold arrows in Fig. 2.) 

Under working conditions the electrode x = 11 is grounded (,~ = 0), while a potential ,~ = V/,exp(j2~rft) is applied 
to the electrode x = 0. The value of the potential on the electrode q> = l t +12 is unknown, but the overall charge 
is zero. During operation the transformer generates a potential ~ = Vo~texp(j2~rfi) on the electrode ,# = Ii +12 
where Vo,t E C. A measure of the efficiency of this device is the voltage transformation factor K = I Vo, t l/Vi~. The 
fundamental operating frequencies of a longitudinal-longitudinal piezoelectric transformer are the first 
frequencies of electric resonance with tension-compression modes with respect to x. 

We will compare the following models of a piezoelectric transformer: a model one-dimensionally elastic along 
x with additional elements which describe the piezoelectric effects (1D), a model that is two-dimensionally 
piezoelectric in the Oxy plane using the hypothesis of a plane stressed state (2D) and a three-dimensional 
piezoelectric model (3D). In Table 1 we show the first electric resonance frequencies f~(k) and antiresonance 
frequenciesf~(k) (in kHz), in which piezoelectric couplings occur. (Here the number of working electrical resonance 
frequencies is not the same as their order numbers of the natural frequencies of the body considered.) The 
calculations were made in ANSYS with rectangular finite elements with a splitting of the length l~ + /2  into 20 
elements (1D, 2D and 3D), a width a in five elements (2D and 3D) and a thickness b in two elements (3D). 

It can be seen from Table 1 that the first tension-compression frequencies are well determined by the one- 
dimensional theory. 

We determined the transformation factor K from the solution of the problems of the steady-state oscillations 
for the one-dimensional model employing the method of expansion in four modes of oscillation both for the one- 
dimensional and two-dimensional models with the solution of the complete system of linear algebraic equations 
(2.3). 

We specified the damping for the one-dimensional model, using the mode-expansion method, via the attenuation 
factor ~ = 1/(2Q) with a mechanical Q-factor Q = 350. For the one-dimensional and two-dimensional models, 
by solving the complete system of linear algebraic equations we will determine the attenuation in terms of the 
coefficients C~d and 13d, which occur in the representation of the damping matrix [4] 

C,,,, = adM,,, + 13aK .... (5.1) 

We will assume that the Q-factor of the piezoelectric transformer at resonance frequenciesf.o) andf.(2) are Q0) 
and Q(2) respectively. By comparing representations (5.1) and (2.1) we an obtain the following approximate formulae 

~.1 = 2~f,(~)f,~2,[(l + k~>)f.(2)Q<2) -(1 + k~2))L(~)Q.)]/ z~ 
9 2 

~,l = (I + kfi) )(I + k 2 )lfr(2)Q(2) - fro)Q()) ]/(2hA) (5.2) 

2 2 2 2 
A = Q¢I)Q(2)[(I  +km )~l(2) - ( I  + kr2))f~,()) ] 

k 2 = ( W  r K r ~-~ ~ r ( j } " , { j ~ " ~ , ,  " " l ~ " " " ~ ,  , " W , "  ( j ) ) / ( W l  I { j } " K . , ,  • W.O )) 

Z 

-=-,v---f 
o I t ,  

Fig. 2 
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Model ./;-(I) ]~'a t) ,1)-(2~ ./~a2) 

I D 18.80 21.08 38.87 42.28 
2D 18.70 20.87 38.39 41.66 
3D 18.73 20.89 38.45 41.76 

Table 2 

Model K( ~ ) K(2 ~ 

1D (Mode sup.) 65.92 66.21 
1D (Full) 65.89 66.20 
2D (Full) 63.97 64.97 

They were used to calculate the transformation factors Kj in the two-dimensional model, while for the one- 
dimensional model, the reduced system of linear algebraic equations which included the matrix g,u,, employed 
other values of the coefficients ad and ~d, formally obtained from (5.2) with k(1) = k(2) = 0. 

Table 2 shows the results of calculations of the transformation factors Kq) for the first two working frequencies, 
close to the first resonance frequenciesfr0) (j = 1,2) from Table 1. It can be seen that the mode-expansion method 
(Mode sup.) for this problem gives values of the transformation factors which hardly differ from the values calculated 
using methods which ,zmploy the solution of the complete system of linear algebraic equations (Full). 

We wish to thank our colleagues O. N. Akopov, K. A. Nadolin and A. S. Skaliukh for developing the ACELAN 
software package, the results of the development of which were used to carry out the numerical experiments, and 
also Yu A. Kramarov for suggesting the problem of designing a piezoelectric radiator of original construction. 
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